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The formation of C-C bonds at the anomeric center of carbohydrates has become 
an important area in organic synthesis.l The Lewis acid catalyzed addition of carbon 
nucleophiles to electrophilic sugar derivatives is the most popular method generally 
affording a-C-glycosides in the pyranose series. Because of the kinetic anomeric 
effect2 of the ring oxygen, the pyran oxonium species usually accepts nucleophiles 
from the a-face.3 It is, however, surprising that C-glycosyl derivatives of 2- 
azidosugars have been scarcely reported in the literature4v5 in spite of their interest as 
precursors of potential inhibitors for various hexosamine transferases. 

Alkyne transfer6>7 to the anomeric center of 2-azidosugars is an attractive 
approach since reactive alkynyl nucleophiles are readily accessible8 and should lead to 
stable  compound^.^ We recently reported9 a new access to 1,6-anhydr0-2-azido-Z 
deoxy-P-D-glucopyranose from D-glucal which prompted us to examine the reactivity 
of alkynyl nucleophiles towards 1,6-anhydrosugars, lo  the D-gfuco compound 1 being 
taken first as a model substrate. It soon appeared that the use of strong Lewis acids 
such as Tic14 gave rise to complexation of the substrate and partial deprotection.ll 
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1 2 1;:; 2 ii a : p  9 : 1  

iii iv 
F - 3 a:B 1 : 4  

B r 0 1 0 5  BnO OBn 76% 

5 B:a 98 : 2  

6 7 a : p  1 O O : O  I 

Scheme. Reagents and conditions : i) C6H13C=CSnBu3, AgBF4, (CH2C1)2, 0 "C; ii) 
MeOH-NEtyH20,20 "C; iii) A c ~ O - C F ~ C O ~ H ,  20 "C, then BnNH2, Et20,20 "C, then 
DAST, THF, 20 "C, iv) C6H13CsCAIEt2, toluene-hexane, 0 "C. 

Coupling of the more electrophilic a-chloride 212 with I-tributylstannyloct- l-yne13 
could be promoted7 by catalytic ZnC12 at 100 "C but only in a modest yield (40%). 
We now report that silver tetraflu~roborate~~ is a much more efficient promoter giving 
at 0 "C the C-oct-1-ynyl glycoside 3 (a$, 9:l) in 85% yieId.l5 

The alkyne T[: system adds preferentially to the a-face of the oxonium species 
generated from the chloride giving rise to a vinyl cation stabilized by the P-tin atom. 
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The counteranion BF4- provides fluoride ions captured by the tributyltin moiety thus 
establishing the acetylenic bond. When the reaction was quenched with diethyl ether, a 
transient a-fluoride 5 could be detected. l6 

Diethyl oct-1-ynylalanel7 did not react with chloride 2 but underwent a fast 
coupling with the glucosyl fluoride 518 @:a, 98:2) in toluene-hexane at 0 "C to give 
the C-glycosides 3 @:a, 4:l) in 76% yield.l9 The strong affinity of aluminum for 
fluoride ions suggests a complexation between the alane and the substrate leading to an 
ion pair where the nucleophilicity of acetylide has increased.20 However, the 
preferential P-selectivity of the reaction cannot be simply explained by a direct collapse 
of a p-ion pair since tetra-0-benzyl-a and P-D-glucopyranosyl fluorides were found to 
give similar ratios of coupling products @:a, 1:l and 3:2, respectively) when treated 
under the same conditions. 

The gluco-azido bromide 6 easily obtained from D - g l ~ c a l 9 . ~ ~  when treated with 
1-uibutylstannyl-oct- 1-yne in the presence of AgBF4 gave the C-glycoside 7 (a:P, 
1OO:O) in 76% yield.22 The galocto azido bromide 923 under the same conditions gave 
the C-glycoside 10 (a:p, 4:l) in 62% yield. The azido fluoride 8 @:a, 3:l) reacted 
with diethyl oct-1-ynylalane at 0 "C to give 7 (a:p, 2:3) in 50% yield. 

In conclusion, coupling of alkynylstannanes with pyranosyl chlorides or 
bromides in the presence of AgBF4 affords a convenient access to a-C-glycosides 
including the 2-azidosugars. Its compatibility with an ester function at the primary 
alcohol group makes it attractive for further functionalization of the pyranose ring. As 
to alkynylalane couplings, further studies should bring better understanding of the 
mechanism and influence of protective groups upon the stereoselectivity. 
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20 
4a,  colorless oil, [aID +68 (c 1, CHC13), lH NMR (CDC13) 6 7.40-7.27 (m, 15 
H, 3 Ph), 4.99,4.89,4.82, and 4.64 (4 d, 4 H, J 11 Hz, 2 CHzPh), 4.74 (dt, 1 H, 
J1,2 5.5, J1,CH2 2.2 Hz, H-l), 4.70 ( s ,  2 H, CH2 Ph), 3.96 (dd, 1 H, 52 3 9.5, 
J3  4 9.0 Hz, H-3), 3.90 (ddd, 1 H, H-5), 3.82 (dd, 1 H, J 5  6a 2.8, J6a,6b 12 Hz, 
H-6a), 3.70 (dd, 1 H, J5,6b 4.2 Hz, H-6b), 3.56 (dd, 1 H, H-2). 3.49 (dd, 1 H, 
54 5 10 Hz, H-4), 2.27 (dt, 2 H, J 7 Hz, CHz.C=C-), 1.60- 1.25 (m, 8 H, 4 W 2 ) ,  

and 0.88 (t, 3 H, J 7 Hz, CH3). Anal. Calcd for C35H4205: C, 77.46; H, 7.80. 
Found: C ,  77.84; H, 7.95. 

20 
4 h  oil, [ a l ~  -2 (c 1, CHC131, lH NMR (CDC13) 6 7.40-7.30 (m, 15 H, 3 Ph), 
5.01, 4.91, 4.86, 4.83, 4.81, and 4.64 (6 d, 6 H, J 11 Hz, 3 CHzPh), 4.08 (dt, 1 
H, J1,2 9.5, J ~ , c H ~  2 Hz, H-l), 3.72-3.49 (m, 5 H, H-2,3,4,6a,6b), 3.33 (ddd, 1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
0
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



5 12 JOBRON ET AL. 

H, H-5), 2.26 (dt, 2 H , J 7  Hz, CH2.C=C-), 1.58-1.20 (m, 8 H, 4 CH2), and 0.85 
(t, 3 H, J 7 Hz, CH3). Anal. Calcd for C35H4205: C, 77.46; H, 7.80. Found: C, 
77.37; H 7.93. 
7a, oil, [aID +57 (c 1.06, CHC13), vmax 2220, 2090, 1730 cm-1; 1H NMR 
(CDC13) 6 7.40-7.25 (m, 10 H, 2 Ph), 4.93 and 4.88 (2 d, 2 H, J 11 Hz, 
CHzPh), 4.85 and 4.57 (2 d, 2 H, J 11 Hz, CH2Ph), 4.78 (dt, 1 H, J1,2 5.5, 

H, J5,6b 4 Hz, H-6b), 4.06 (ddd, 1 H, H-5), 3.93 (dd, 1 H, J2,3 10, J3 4 9 Hz, 

CH2.C=C-), 2.05 (s, 3 H, OAc), 1.60-1.25 (m, 8 H, 4 CH2), and 0.89 (t, 3 H, J 
7 Hz, CH3).Anal. Calcd for C30H37N305: C, 69.34; H, 7.18; N, 8.08. Found: 
C, 69.29; H, 7.30; N,  8.04. 
7p, l H  NMR (CDC13) data from a mixture of 7a,p: 6 4.31 (dd, 1 H, J5,6a 2, 
J6a 6b 12 Hz, H-6a), 4.17 (dd, 1 H, J5  (jb 4.5 Hz, H-6b), 3.92 (dt, 1 H, J1 2 9.5, 
J ~ , c H ~  2 Hz, H-l), 2.26 (dt, 2 H, J 7 Hz CHt.C=C-), and 2.04 (s, 3 H, OAc). 
10% oil +74 (C 1.05, CHC13), vmax 2215, 2090, 1730 cm-l; l H  NMR 
(CDCl3) 6 7.45-7.25 (m, 10H, 2 Ph), 4.90 and 4.55 (2 d, 2 H, J 11 Hz, CHzPh), 
4.81 (dt, 1 H, J1 C H ~  2 Hz, H-I), 4.77 (m, 2 H, CHzPh), 4.15-4.04 (m, 3 H, H- 
5,6a,6b), 4.03 (dd, I H, J1,2 5.5, J2,3 10 Hz, H-2), 3.89 (dd, 1 H, 4 4  2.5, J4,5 

OAc), 1.55-1.20 (m, 8 H, 4 CH2), and 0.90 (t, 3 H, J 7 Hz, CHJ).Anal. Calcd 
for C30HyN 0 5 :  C, 69.34; H, 7.18; N, 8.08.Found: C, 69.14; H, 7.28; N, 7.81. 
lop, oil, [aID +26 (c 1.02, CHCl3), vmax 2230, 2090, 1730 cm-1; 1H NMR 
(CDC13) 6 7.45-7.25 (m, 10 H, 2 Ph), 4.93 and 4.60 (2 d, 2 H, J 11 Hz, 

6a), 4.06 (dd, 1 H, J5  6b 5.5 Hz, H-6b), 3.91 (dd, 1 H,J1 2 10, J2,3 9.5 Hz, H- 

3.48 (m, 1 H, H-5), 3.30 (dd, 1 H, H-3), 2.24 (dt, 2 H, J7 Hz, CHz.C=C-), 1.98 
(s, 3 H, OAc), 1.60-1.20 (m, 8 H, 4 CH2), and 0.88 (t, 3 H, J 7 Hz, CHj).Anal. 
Calcd for C30H37N305: C, 69.34; H, 7.18; N, 8.08. Found: C, 69.45; H, 7.16; 
N, 7.99. 

20 film 

J1 (332 2.2 Hz, H-l), 4.32 (dd, 1 H, J5,6a 2.5, J6a,6b 12 Hz, H-6a), 4.26 (dd, 1 

H-3), 3.55 (dd, 1 H, H-2). 3.51 (dd, 1 H, J4,5 10 Hz, H-4), 2.27 (dt, 2 H, J 7  Hz, 

20 Blm 

1 Hz, H-4). 3.86 (dd, 1 H, H-3), 2.24 (dt, 2 H, J 7 Hz, CH2.C&-), 2.00 (s, 3 H, 

;b film 

CH2Ph), 4.76 (m, 2 H, CHzPh), 4.16 (dd, 1 H, J5,6a 6.5, J6a,6b 11.5 Hz, H- 

2), 3.84 (dt, 1 H, J1,CH2 2 Hz, H-l), 3.77 (dd, 1 H, J3,4 2.5, J4.5 1 Hz, H-4), 
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